Simple polytopes without small separators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding Small Node Separators

We present a new algorithm to compute small node separators on large, undirected graphs ensuring a user defined balance on the induced connected components. Our algorithm uses edge separators computed by the open source graph partitioning package KaHIP [42] and a new technique to transform them into node separators. Given an undirected graph G, our algorithm constructs a flow problem on a subgr...

متن کامل

Linear Programming, the Simplex Algorithm and Simple Polytopes

In the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concurring the simplex algorithm. We describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes. 

متن کامل

Simple 0/1-Polytopes

For general polytopes, it has turned out that with respect to many questions it su ces to consider only the simple polytopes, i.e., d-dimensional polytopes where every vertex is contained in only d facets. In this paper, we show that the situation is very di erent within the class of 0/1-polytopes, since every simple 0/1-polytope is the (cartesian) product of some 0/1-simplices (which proves a ...

متن کامل

Simple Extensions of Polytopes

We introduce the simple extension complexity of a polytope P as the smallest number of facets of any simple (i.e., non-degenerate in the sense of linear programming) polytope which can be projected onto P . We devise a combinatorial method to establish lower bounds on the simple extension complexity and show for several polytopes that they have large simple extension complexities. These example...

متن کامل

Lattice Points in Simple Polytopes

P (h) φ(x)dx where the polytope P (h) is obtained from P by independent parallel motions of all facets. This extends to simple lattice polytopes the EulerMaclaurin summation formula of Khovanskii and Pukhlikov [8] (valid for lattice polytopes such that the primitive vectors on edges through each vertex of P form a basis of the lattice). As a corollary, we recover results of Pommersheim [9] and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2017

ISSN: 0021-2172,1565-8511

DOI: 10.1007/s11856-017-1572-1